
Physics Tutorial 2: Numerical Integration Methods

Summary

The concept of numerically solving differential equations is explained, and applied to real time gaming
simulation. Some objects are moved in a 3D space using numerical integration to resolve simple
Newtonian mechanics in an iterative manner.

New Concepts

Integration for Linear Motion, Integration for Angular Motion, Force-Based Physics Simulation, Nu-
merical Integration through the Euler, Verlet and RK2 Midpoint Methods

Introduction

A physics engine needs to move items around the environment in a believable manner. The first
tutorial in this series included a reminder of Newtonian mechanics, and described their relevance to
real-time game simulation. This tutorial discusses how that simulation is achieved through implemen-
tation of a number of iterative techniques for resolving differential equations numerically.

The physics engine which we are developing is based around resolving the forces acting on a body,
and calculating the acceleration instigated by the resultant force at every time-step of the simulation.
From this acceleration, the velocity can then be calculated, which in turn allows the calculation of
the position of the object for each frame of the game. The first tutorial described how multiple forces
on an object are resolved, and showed that the relationship between force and acceleration is propor-
tional according to Newton’s second law of motion. In this tutorial we discuss how to translate an
acceleration into a position in world space using integration.

We will first remind ourselves of what is meant by integration, and discuss why this is relevant to
gaming simulation. We then look at a few techniques for implementing numerical integration.

1

Integration

As you may recall from school or undergraduate study, integration is a major part of calculus, which
allows us to mathematically describe the relationship between variables in terms of their rate of change.
In this section, we’ll first present integration in the context of linear motion, before showing how these
principles extend into angular motion.

Linear Motion

Probably the most intuitive way to introduce integration is to talk more specifically about the rela-
tionship between acceleration, velocity and displacement – this is especially appropriate in the context
of developing a physics engine for games, as these are the parameters in which we are interested. Note
the use of the words displacement and velocity here, rather than distance and speed. This is because
we are describing three-dimensional vectors, rather than one-dimensional scalars, as discussed in the
previous tutorial.

Velocity v is the rate of change of displacement s over time, and acceleration a is the rate of change
of velocity over time. In equation form, this is written as:

v =
ds

dt

a =
dv

dt

Conversely, velocity is the integral of acceleration over time, and displacement is the integral of velocity
over time:

v =

∫
a dt

s =

∫
v dt

The graphs in Figure 1 show the relationship between displacement, velocity and acceleration for
a body which accelerates smoothly from rest, then moves at a constant velocity, then decelerates
smoothly back to being stationary.

Figure 1: Relationship between acceleration, velocity and displacement

The first graph shows the acceleration, which is a series of discrete values – for the first segment
there is no acceleration, then during the second there is a constant acceleration, during the third
there is no acceleration, then the fourth has constant negative acceleration (i.e. deceleration), and
the fifth again has zero acceleration. The second graph shows how this is translated into the velocity

2

of the object – during the first segment with zero acceleration the velocity remains at zero, in the
second portion with constant acceleration the velocity increases linearly, the third segment has zero
acceleration so the velocity remains constant, in the fourth the velocity decreases linearly due to a
constant deceleration, and the fifth segment maintains a constant velocity as acceleration is zero. The
third trace shows how the results of the velocity on the displacement of the object (i.e. how far it
has travelled in total) - again it is easy to see how the velocity graph contributes to the displacement,
with the object getting further away while there is a positive velocity then remaining at the same
displacement when the velocity returns to zero.

An informal definition of integration is that it measures the area under the trace of the value being
integrated. Taking another look at the three traces in the diagram should make this more clear. The
second trace (velocity) shows the integral of the first trace (acceleration); you should be able to see
that it is a measure of the total area between the trace and the zero line – e.g. during the second
segment when the acceleration is a constant positive value the velocity trace rises linearly as the area
under the acceleration line increases linearly over time.

Angular Motion

We have discussed in an earlier lecture how to calculate the angular acceleration of a rigid body caused
by forces acting on that body. The next step is to translate that acceleration into an angular velocity
and orientation, in order to spin and rotate our objects in the game world. Our approach here still
has its roots in the mathematics discussed above.

Remembering the analogues between angular and linear motion, we can integrate angular velocity
ω with respect to the angular acceleration α as follows:

ωn+1 = ωn + αn∆t

However, orientation (Θ) needs special care in order to ensure behaviour is consistent across all
three axes. To that end, our equation connecting Θn to Θn+1, which is a fast approximation, can be
defined:

Θn+1 = Θn + Θnωn
∆t

2

Θn+1 must then be normalised to remove errors introduced by this approximation. The reason
this approximation has that condition is we bypass the computation which explicitly connects θ to Θ.

The origination of these discrete equations is discussed below.

Force-Based Physics Engine

Okay, so now we have our mathematical model for calculating the positions of our simulated objects
from the forces acting upon them:

• Resolve all forces on an object into a single force

• Calculate the acceleration caused by that force from Newton’s second law F = ma.

• Integrate the acceleration over time to calculate the velocity.

1 for (PhysicsNode* obj : physicsNodes)

2 obj ->IntegrateForVelocity(updateTimestep);

PhysicsEngine::UpdatePhysics

• Resolve Constraints.

• Integrate the velocity over time to calculate the position.

3 for (PhysicsNode* obj : physicsNodes)

4 obj ->IntegrateForPosition(updateTimestep);

PhysicsEngine::UpdatePhysics

3

The next question to be addressed is how to integrate a function using a computer program.
Integration is a continuous process, but a computer program can only work with discrete pieces of
data. In fact the solution can be found in the informal description of integration as a running total
of the area beneath the graph described earlier, as we shall see in the next section.

A Note on Inverse Mass

Efficiency is at the heart of real-time physics simulation. As a result, we tend to try and avoid the
costlier floating point operations. Computing our acceleration requires us to divide the applied force
by the mass of the object; division is more computationally expensive than multiplication and, as a
result, we often store the inverse-mass of our object as an element of its physical data. This is basically
1/m for mass m, allowing us to multiply by inverse mass to obtain acceleration.

Numerical Integration

In this section we will discuss a number of increasingly complex, and increasingly accurate, methods
of integrating a time series of data using numerical integration. They are all based on the idea that
each iteration of the time series can be treated as an extra section of the area under the trace.

Time Series and the Time Step

Before discussing the specific integration methods, we must talk about how time is represented in our
simulated system. As we know, computers deal with discrete numbers and states; if the simulation
runs sufficiently quickly then we see these states as continuous movement. For each frame of the
simulation, we need to calculate the state of each object (i.e. the velocity and position), based on the
state of the object in the previous frame.

Figure 2: Timestep integration of constant velocity

The record of a particular state of an object (for example the x coordinate of the object’s position)
is known as a time series. The trace of a graph where the x axis represents time (such as the three
graphs in Figure 1) is a time series. The amount of simulated time that has elapsed between each step
of the simulation is known as the time step. Note the use of the term simulated time – the time step
does not have to be the same as the amount of time it takes to calculate each frame of the simulation.
Rather, it is common (and recommended) practise that the time step be a fixed value (e.g., 8ms or
120fps).

It should be noted, too, that these numerical integration techniques are used in all areas of com-
puter simulation, not just in real-time games. And, even within games, not just in real-time physics
simulation. Consider the example of a city or civilisation simulator where population increases over
time (be that in ’real-time’, or turn-based). This means that there may be a variable x representing

4

the population of a city at any given time step, and a variable y, where y = dx
dt , which is the rate

at which population changes. Perhaps the rate of population change is connected to the presence of
local wildlife, which connects y to another function - e.g., a lack of available animals to hunt makes
y negative for a turn, and the availability of animals is related back to just how many people are
hunting them (x).

You can (hopefully!) see how this interconnection is both complex, and connected to the very
principles we’re talking about. It’s also a fundamental aspect of all gaming - real-time or otherwise -
because if nothing changes over time, why on earth are you playing?

The basic techniques are best illustrated with a physical example, however wide-ranging their
applicability. Consider a body travelling with constant velocity v as shown in Figure 2. The dis-
placement s of this body is calculated at each time step, by numerically integrating the velocity. The
displacement at the end of the current time step sn+1 is calculated by taking the displacement at the
start of the time step sn, and adding on the extra displacement achieved by the current velocity vn.

sn+1 = sn + vn∆t

Hence the displacement at each time step is calculated from the previous displacement and pre-
vious velocity. Similarly, the displacement at the next time step will be calculated from the current
displacement and current velocity, and so on. This is therefore an iterative process.

In the stated example, the calculation of the displacement will be accurate if the velocity is a
constant. However we are interested in simulating systems where the velocities are not constant.
This is where numerical integration gets interesting. Because numerical integration is an attempt to
represent a continuous process in a discrete manner, approximations need to be made, which means
that the results become inaccurate. As it is an iterative process the inaccuracies are likely to get
larger over time (as each result is calculated from the previously inaccurate result, and introduces its
own inaccuracy). In the example given, when the velocity of the body is not constant, the assump-
tion that the velocity remains constant throughout a specific time-step is no longer 100% accurate.
Of course, increasing the number of samples (i.e. reducing the time step) should improve the accu-
racy. This is why a physics engine typically runs at a much faster frame-rate than the rest of the game.

We will now describe some algorithms commonly used for numerical integration, and discuss their
appropriateness to games development.

• Explicit Euler Integration

• Implicit Euler Integration

• Semi-Implicit Euler Integration (or Symplectic Euler Integration)

• Second Order Approaches (e.g., Verlet Integration)

Explicit Euler Integration

Explicit Euler Integration (often referred to as simply Euler Integration) is the direct implementation
of the method already discussed. Explicit Euler Integration uses the first derivative and evaluates it
at the current time.

The following equations are used to calculate the position of a body from its acceleration for each
frame of the simulation:

vn+1 = vn + an∆t

sn+1 = sn + vn∆t

Remember that we know the acceleration, as we have calculated it by resolving all the forces on
the body, and dividing the resultant force by the mass of the body, according to Newton’s second law.

In C++ these equations are encoded simply as:

5

1 NextVelocity = ThisVelocity + ThisAcceleration * dt;

2 NextPosition = ThisPosition + ThisVelocity * dt;

Explicit Euler

Explicit Euler Integration is the simplest and most intuitive numerical integration technique, but it
also exhibits a tendency toward instability unless very short time steps are used. Consequently it tends
not to be used in physics engines for games as the computational savings gained from the simplicity
of each iteration, are outweighed by the increased frequency of the iterations that are required for
accuracy.

Implicit Euler Integration

Implicit Euler Integration (also referred to as Backward Euler Integration) addresses the approxima-
tion issues inherent in Explicit Euler Integration by using a future state of the system. Implicit Euler
Integration therefore uses the first derivative and evaluates it at the next time step.

The following equations are used to calculate the position of a body from its acceleration for each
frame of the simulation:

vn+1 = vn + an+1∆t

sn+1 = sn + vn+1∆t

Of course these equations rely on knowing the future value of the acceleration (i.e. an+1). While
there are methods for approximating, or predicting, the future value of a time series, these are in
general far too expensive to be appropriate for use in a physics engine for games. Remember that the
physics engine is likely to be updating many many objects per iteration, so any additional expense
in the calculations is repeated per object, multiplying the overall cost many times. Consequently
the Implicit Euler Integration method tends not to be utilised in game simulation, and we will not
consider it further.

Semi-Implicit Euler Integration (or Symplectic Euler Integration)

Semi-Implicit Euler Integration combines the ease of calculation of the Explicit approach with some
of the increased accuracy of the Implicit approach. It is also often referred to as Symplectic Euler
Integration. Semi-Implicit Euler Integration uses the first derivative and evaluates the acceleration at
the current time step, and the velocity at the next time step.

The following equations are used to calculate the position of a body from its acceleration for each
frame of the simulation:

vn+1 = vn + an∆t

sn+1 = sn + vn+1∆t

In this case we know the acceleration (it is calculated from resolving the forces acting on the
body, and dividing by the mass), and we use that to calculate the velocity at the subsequent time
step. We then use that ”future” velocity to calculate the position at the next time step. This has the
effect of introducing a stabilising factor, so the iterations are a lot less likely to become too inaccurate.

In C++ these equations are encoded as follows. Note that the order of these two lines of code is
very important, as the velocity must be calculated before it is used to calculate the position. Also
note that in our framework’s engine structure, we update position after constraints have been resolved
- this has significant benefits in terms of accuracy:

1 NextVelocity = ThisVelocity + ThisAcceleration * dt;

2 NextPosition = ThisPosition + NextVelocity * dt;

Semi–Implicit Euler

As Semi-Implicit Euler Integration is very fast to compute, and tends to retain accuracy over many
iterations, this is a very common choice of algorithm for physics engines in games technology. This is
the algorithm which we will utilise at the heart of the physics engine that we are developing in this
tutorial series.

6

Second Order Approaches

Verlet Integration

Verlet integration does not calculate the velocity directly, but bases its calculations on the last two
positions of the body, and the acceleration. It therefore uses the second derivative and assesses it
at the current time step. It should be noted that the Verlet approach does not mesh well with the
provided framework code, and requires extensive rewrites to integrate - pun intended.

If we take the equations given for Semi-Implicit Euler Integration above, and substitute for vn=1

in the equation for sn+1, then we get:

sn+1 = sn + vn∆t+ an∆t2

The velocity is calculated by subtracting the previous position from the current position, and dividing
by the time step:

vn =
sn − sn−1

∆t
which gives us the equation used by Verlet Integration to calculate the position of a body from its
acceleration for each frame of the simulation:

sn+1 = sn + (sn − sn−1) + an∆t2

In C++ these equations are encoded as:

1 NextPosition = ThisPosition + ThisPosition - LastPosition +

2 ThisAcceleration * dt * dt;

3 LastPosition = ThisPosition;

Verlet

Note that in practice the multiplication of ∆t with itself would not be calculated for every object. It
would be calculated once per frame and the result (i.e. ∆t2) would be multiplied by the acceleration
within the update loop, as this is more efficient.

Verlet integration is similarly efficient to compute as Semi-Implicit Euler Integration. It also has
the advantage of being reversible, whereas the Euler approaches are not (this can be especially useful
for games involving replays). Further to this, when we come to consider collision responses later in
this tutorial series, we will see that there are distinct advantages to using a Verlet integration method,
as we can set the post-collision position directly rather than having to worry about the velocity. One
thing to bear in mind when using Verlet Integration is that it is not self-starting (i.e it needs the state
of the simulated objects from one time step in the past), so care must be taken when setting the initial
conditions of simulated objects.

Runge-Kutta ”Midpoint” Method

A second-order approach which more easily slots into the framework is provided through the Runge-
Kutta methods. The Runge-Kutta methods are actually a collection of implicit and explicit iterative
methods for resolving calculus. We have already considered one Runge-Kutta implementation - Euler
integration is essentially a first-order Runge-Kutta approach.

In the Euler approach, we consider the variable and its derivative at time t, and time t+ 1 - e.g.,
st and vt are used to determine st+1. We know that an object acting under changing forces might
experience a change to its acceleration value over the course of the time-step - we just accept that
inaccuracy as part of the price for a fast simulation. The same is true of changing velocity under
constant acceleration - we know that velocity halfway through a time-step will have changed, we just
overlook it. The premise of RK2 is that the derivative at the midpoint of the time-step is a more
accurate representation than the derivative at the beginning (Explicit Euler) or the derivative at the
end (Semi-Implicit Euler).

Under this scheme, you need to predict the derivative (e.g., velocity at constant acceleration)
halfway through the timestep, and then apply that in computation of the change in position, e.g.
sn+1 = sn + vn+0.5∆t.

7

More Advanced Numerical Integration Methods

Whereas the methods described so far in this section are most suited to game simulation, the appli-
cations of numerical integration are numerous and widespread throughout mathematics, engineering
and science. In applications where performing in real-time is less important, or where fewer agents
are to be simulated at much higher accuracies, there are more complex iterative methods available.
These include higher orders of the Runge-Kutta method, which divide the time step into an even
larger number of sections. Typically a fourth order Runge Kutta algorithm is used (referred to as
RK4), which splits each time step into four subsections.

Numerically integrating a set of differential equations is an important part of many areas of sci-
entific research. Most differential equations can’t actually be solved mathematically, however they
can be simulated by using one of these iterative methods to solve them numerically. The time series
produced by the numerical integration can then be analysed further. For those interested, the three-
dimensional time series shown in the figure at the start of this tutorial is generated by numerically
integrating Lorenz’ equations, and is known as a Lorenz attractor.

Implementation

Consider the first couple of tasks for today from the Practical Tasks handout. Think about them
during your free time today, so you have some ideas of how to go about implementing them before
the practical session begins. Today covers a lot of material, so make good use of your time.

Tutorial Summary

We have reviewed basic calculus and its applicability to linear and angular motion, and discussed how
forces are used to calculate the motion of bodies. We have discussed how to implement a numerical
integration scheme, and how to use it to calculate the velocity and displacement of an object from its
acceleration, which can be extended towards the angular case.

1 void PhysicsNode :: IntegrateForVelocity(float dt)

2 {

3 //Apply Gravity

4 // Technically gravity here is calculated by formula:

5 // (gravity / invMass * invMass * dt)

6 // So even though the divide and multiply cancel out , we still

7 // need to handle the possibility of divide by zero.

8

9 if (invMass > 0.0f)

10 linVelocity += PhysicsEngine :: Instance()->GetGravity () * dt;

11

12

13 //Semi -Implicit Euler Intergration

14 // - See "Update Position" below

15 linVelocity += force * invMass * dt;

16

17

18 // Apply Velocity Damping

19 // - This removes a tiny bit of energy from the simulation each update

20 // to stop slight calculation errors accumulating and adding force

21 // from nowhere.

22 // - In it’s present form this can be seen as a rough approximation

23 // of air resistance , albeit (wrongly ?) making the assumption that

24 // all objects have the same surface area.

25 linVelocity =

26 linVelocity * PhysicsEngine :: Instance()-> GetDampingFactor ();

27

28

8

29 // Angular Rotation

30 // - These are the exact same calculations as the three lines above ,

31 // except for rotations rather than positions.

32 // - Mass -> Torque

33 // - Velocity -> Rotational Velocity

34 // - Position -> Orientation

35 angVelocity += invInertia * torque * dt;

36

37

38 // Apply Velocity Damping

39 angVelocity =

40 angVelocity * PhysicsEngine :: Instance()-> GetDampingFactor ();

41 }

42

43 void PhysicsNode :: IntegrateForPosition(float dt)

44 {

45 // Update Position

46 // - Euler integration; works on the assumption that linearvelocity

47 // does not change over time (or changes so slightly it doesnt make

48 // a difference).

49 // - In this scenario , gravity /will/ be increasing velocity over

50 // time. The in -accuracy of not taking into account of these changes

51 // over time can be visibly seen in tutorial 1.. and thus how better

52 // integration schemes lead to better approximations by taking into

53 // account of curvature.

54 position += linVelocity * dt;

55

56

57 // Update Orientation

58 // - This is slightly different calculation due to the wierdness

59 // of quaternions. It does the same thing as position update

60 // (with a slight error) but from i’ve seen , is generally the best

61 // way to update orientation.

62 orientation = orientation +

63 Quaternion(angVelocity * dt * 0.5f, 0.0f) * orientation;

64

65 // invInertia = invInertia *

66 // (Quaternion(angVelocity * dt * 0.5f, 0.0f)

67 // * orientation). ToMatrix3 ();

68 // As the above formulation has slight approximation error , we need

69 // to normalize our orientation here to stop them accumulating

70 // over time.

71 orientation.Normalise ();

72 }

PhysicsNode.cpp

9

